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1. DEFINITION OF CATEGORY

Category theory is a way to classify and compare abstract objects that naturally
occur in mathematics. Each category specified what are the allowed morphisms,
which one may think of as arrows between the objects. We will focus on concrete
categories, where the objects are sets and the morphisms are functions. We begin
by stating the formal definition of category.

Definition 1. A category € consists of:
e a class of objects Objg;
e for any pair of objects A, B € Obj, a set of morphisms More(A, B) from
A to B, such that More (A, B) N More(C,D) # @ = A=C and B = D;
for any three objects A, B,C' € Obj, a law of composition
o : Morg (B, C) x Morg(A4, B) = More(A,C)
which is associative, that is, if f € Morg(A4, B), g € More(B,C), and
h € Morg(C, D), then (hog)o f =ho(go f);
e for each A € Objy, a morphism id4 € More (A, A) satisfying
(a) if f € Morg(B,A), thenidg o f = f;
(b) if g € More(A, B), then goidy = g.
A category is called concrete if the objects are sets and the morphisms are func-
tions between the sets.

To identify a concrete category, one first identifies the objects. These will be sets
with some sort of additional structure; the type of structure is what distinguishes
the category. For example, a partial order, or a binary operation, would be consid-
ered additional structure. Then one identifies which functions between the objects
will be said to “preserve the structure”. There are choices to be made here; often
there is more than one valuable choice, in which case, one may define more than
one category with the same class of objects, but with differing morphisms.

One should be aware that for concrete categories, the third axiom of the definition
is automatically satisfied, since function composition always exists and is always
associative. The fourth axiom requires that the identity map on the underlying set
of an object is considered to be a morphism.
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2. COMMON CATEGORIES

We list some common concrete categories.

H Objects \ Morphisms H
Sets Functions
Posets Order preserving maps
Equisets Partition preserving maps
Graphs Edge preserving maps
Groups Group homomorphisms
Abelian Groups Group homomorphisms
Rings Ring homomorphisms
Fields Ring homomorphisms
Vector Spaces Linear Transformations
Metric Spaces Continuous functions
Metric Spaces Isometries
Topological Spaces | Continuous functions
Measure Spaces Measurable Functions
Probability Spaces | Measurable Functions

3. ISOMORPHISMS, ENDOMORPHISMS, AND AUTOMORPHISMS

Category theory allows us to come up with a consistent collection of jargon which
may be used in multiple contexts. The first example of this relates to classifying
morphisms.

Definition 2. Let € be a category and let A, B € Obj,.
The notation f: A — B means that f € Mor(A, B).

A morphism f: A — B is an isomorphism if there exists a morphism g : B — A
such that go f =id4 and f o g =idg. In this case, we say that f is invertible and
write f~! for g. The set of isomorphisms from A to B is denoted Iso(A, B).

An endomorphism is a morphism from an object to itself. The set of endomor-
phisms of A is denoted End(A).

An automorphism is an isomorphism from an object to itself. The set of auto-
morphisms of A is denoted Aut(A).

Let € be a category and let A € Objy. Then End(A) is a monoid under compo-
sition; the set of invertible elements of End(A) is Aut(A), which is a group under
composition.

Proposition 1. Let € be a category and let A, B € Obje. Suppose that f : A — B
is an isomorphism. Then

Iso(A,B) = {go f € Mor(A, B) | g € Aut(B)}.
Proof. Call the set on the right hand side Z.
Let h € Iso(A, B). Then ho f~! is an automorphism of B, with inverse foh~!.
Let g=ho f~!. Then go f =h,so h € Z.
Let h € Z. Then h = go f for some g € Aut(B). Then h is an isomorphism,
with inverse f~!o g1 O
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